Sulfuration resistance of five experimental Ag-Pd-Au-Cu alloys with low Pd content of 10 or 12%.
نویسندگان
چکیده
Commercial Ag-based alloy (46Ag-20Pd-12Au-20Cu alloy) is widely used in Japan as a casting alloy. As opposed to the commercial composition, we prepared five experimental Ag-based alloys with reduced Pd content of 10 or 12%, increased Au content of 20 to 30%, and reduced Cu content of 12 to 20%. We then evaluated their sulfuration resistance by analyzing cast specimen surfaces dipped in 0.1% Na2S solution with SEM/EPMA, TF-XRD, and XPS. It became evident that all alloys were susceptible to sulfuration in the segregated Ag-rich Pd-poor phases. The degree and speed of sulfuration, however, differed among the six alloys examined. In particular, one experimental alloy (46Ag-10Pd-30Au-12Cu) possessed a sulfuration resistance equal or superior to that of commercial Ag-based alloy, while the other four experimental alloys were inferior in sulfuration resistance. Based on the results of this study, we concluded that our newly developed 46Ag-10Pd-30Au-12Cu alloy could be employed as a new sulfuration-resistant Ag-based casting alloy--which is especially useful if the price of Pd is skyrocketing again.
منابع مشابه
Corrosion properties of Ag-Au-Cu-Pd system alloys containing indium.
In this study, the corrosion resistance of Ag-Au-Cu-Pd system alloys consisting of 5 or 10 mass% indium was evaluated. Levels of element release and tarnish were determined and electrochemical measurements performed. Results were compared with those for commercial silver-palladium-gold alloy. In terms of electrochemical behavior, the transpassive potential of these experimental alloys was 168-2...
متن کاملEffects of Sn, Ga, and In additives on properties of Ag-Pd-Au-Cu alloy for ultra-low fusing ceramics.
Nine 35% Ag-30% Pd-20% Au-15% Cu alloys containing 2, 4 and 6 mass% of Sn, Ga or In as an additive metal were experimentally prepared to investigate the effects of different additives and their content on the physical and mechanical properties as well as the bond with a ultra-low fusing ceramic. Both the different additives and their content or either of these two factors significantly influenc...
متن کاملTarnish resistance evaluation of experimental Pd-free Ag-Au-Pt-Cu dental alloys.
This study evaluated the tarnish resistance of eight experimental Pd-free Ag-Au-Pt-Cu dental alloys in a 0.1% Na(2)S aqueous solution at 37 degrees C. Color measurements of the plate samples were made using a computerized spectrophotometer before and after immersion in the test solution for up to 72 hours. Tarnish discoloration was evaluated using the color difference vector, DeltaE*, in the CI...
متن کاملNew Solubility Test by Sliding on Ag-Pd-Cu-Au Alloys with Different Cu Contents into Different Solutions with or Without Mucin
Aims: The aims of this study was designed to analyze the released ions from Ag-Pd-Cu-Au alloys after a new sliding solubility test in different solutions with or without mucin. Materials and methods: Eluate solutions, similar to Fusayama’s artificial saliva, Hanks buffer solution, and artificial saliva with or without mucin were prepared. Ag-Pd-Cu-Au casting alloys were selected by particularly...
متن کاملAdhesion of adhesive resin to dental precious metal alloys. Part I. New precious metal alloys with base metals for resin bonding.
New dental precious metal alloys for resin bonding without alloy surface modification were developed by adding base metals (In, Zn, or Sn). Before this, binary alloys of Au, Ag, Cu, or Pd containing In, Zn, or Sn were studied for water durability and bonding strength with 4-META resin. The adhesion ability of the binary alloys was improved by adding In equivalent to 15% of Au content, Zn equiva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dental materials journal
دوره 25 2 شماره
صفحات -
تاریخ انتشار 2006